Document Type : Original Articles

Authors

1 Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.

2 Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

3 Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

4 Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

Background: Chronic stroke patients face impairment due to ankle dorsiflexor weakness that can influence their ankle kinematics and gait. The objective of this study was to compare the effects of a pneumonic ankle-foot orthosis (AFO) with those of a posterior leaf spring (PLS) AFO on the spatiotemporal parameters of gait and ankle range of motion in hemiplegic stroke patients.
Methods: In this cross-sectional study, 5 participants with chronic stroke were tested during one session under three conditions: without orthosis, with pneumatic AFO, and with PLS-AFO. Spatiotemporal gait parameters and ankle joint range of motion were measured with a motion analysis system.
Results: The results indicated that the pneumatic orthosis can improve gait speed in comparison with no orthotics (p = 0.04). No significant difference was seen regarding other evaluated spatiotemporal parameters and ankle range of motion under different orthotic conditions.
Conclusion: The comparison of the immediate effects of the pneumatic ankle-foot orthosis and those of the posterior leaf spring ankle-foot orthosis showed that in comparison with no orthosis or with PLS-AFO, the pneumatic orthosis could improve gait speed, but had no effect on cadence, step length, or ankle range of motion in chronic stroke patients.

Keywords

1. Ma C. Intervention for foot drop in a patient with subacute stroke:
A case report: Florida Gulf Coast University; 2015;2(10):1012-10
2. Pourghasem A, Takamjani IE, Karimi MT, Kamali M, Jannesari
M, Salafian I. The effect of a powered ankle foot orthosis on
walking in a stroke subject: a case study. J Phys Ther Sci.
2016;28(11):3236-40.
3. Bouchalová V, Houben E, Tancsik D, Schaekers L, Meuws L, Feys
P. The influence of an ankle-foot orthosis on the spatiotemporal
gait parameters and functional balance in chronic stroke patients.
J Phys Ther Sci. 2016;28(5):1621-8.
4. Kobayashi T, Singer ML, Orendurff MS, Gao F, Daly WK,
Foreman KB. The effect of changing plantarflexion resistive
moment of an articulated ankle–foot orthosis on ankle and knee
joint angles and moments while walking in patients post stroke.
Clin Biomech. 2015;30(8):775-80.
5. Zissimopoulos A, Fatone S, Gard S. The effect of ankle–
foot orthoses on self-reported balance confidence in persons
with chronic poststroke hemiplegia. Prosthet Orthot Int.
2014;38(2):148-54.
6. Kuan T-S, Tsou J-Y, Su F-C. Hemiplegic gait of stroke patients: the
effect of using a cane. Arch Phys Med Rehabil. 1999;80(7):777-84.
7. Ferreira LAB, Neto HP, Christovão TCL, Duarte NA, Lazzari
RD, Galli M, et al. Effect of ankle-foot orthosis on gait velocity
and cadence of stroke patients: a systematic review. J Phys Ther
Sci. 2013;25(11):1503-8.
8. Chin R, Hsiao-Wecksler ET, Loth E, Kogler G, Manwaring SD,
Tyson SN, et al. A pneumatic power harvesting ankle-foot orthosis
to prevent foot-drop. J Neuroeng Rehabil. 2009;6(1):19.
9. Franceschini M, Massucci M, Ferrari L, Agosti M, Paroli C.
Effects of an ankle-foot orthosis on spatiotemporal parameters and
energy cost of hemiparetic gait. Clin Rehabil. 2003;17(4):368-72.
10. Alam M, Choudhury IA, Mamat AB. Mechanism and design
analysis of articulated ankle foot orthoses for drop-foot.
ScientificWorldJournal. 2014;25(11):1503-8.
11. Nolan KJ, Yarossi M. Preservation of the first rocker is related to
increases in gait speed in individuals with hemiplegia and AFO.
Clin Biomech. 2011;26(6):655-60.
12. Blaya JA, Herr H. Adaptive control of a variable-impedance
ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on
neural systems and rehabilitation engineering. 2004;12(1):24-31.
13. Nikamp CD, Buurke JH, van der Palen J, Hermens HJ, Rietman
JS. Early or delayed provision of an ankle-foot orthosis in patients
with acute and subacute stroke: a randomized controlled trial.
Clin Rehabil. 2017;31(6):798-808.
14. Bethoux F, Rogers HL, Nolan KJ, Abrams GM, Annaswamy TM,
Brandstater M, et al. The effects of peroneal nerve functional
electrical stimulation versus ankle-foot orthosis in patients with
chronic stroke: a randomized controlled trial. Neurorehabil Neural
Repair. 2014;28(7):688-97.
15. Hesse S. Rehabilitation of gait after stroke: evaluation, principles
of therapy, novel treatment approaches, and assistive devices.
Topics in Geriatric Rehabilitation. 2003;19(2):109-26.
16. Slijper A, Danielsson A, Willén C. Ambulatory function and
perception of confidence in persons with stroke with a custommade
hinged versus a standard ankle foot orthosis. Rehabil Res
Pract. 2012;25(11):1503-8.
17. de Wit DC, Buurke J, Nijlant JM, IJzerman MJ, Hermens HJ.
The effect of an ankle-foot orthosis on walking ability in chronic
stroke patients: a randomized controlled trial. Clin Rehabil.
2004;18(5):550-7.
18. Shorter KA, Xia J, Hsiao-Wecksler ET, Durfee WK, Kogler GF.
Technologies for powered ankle-foot orthotic systems: Possibilities
and challenges. IEEE/ASME Transactions on mechatronics.
2011;18(1):337-47.
19. Yamamoto S, Ebina M, Kubo S, Hayashi T, Akita Y, Hayakawa
Y. Development of an ankle-foot orthosis with dorsiflexion assist,
part 2: structure and evaluation. J Prosthet Orthot. 1999;11(2):24-8.
20. H. Teyssedre and G. Lefort. “Dynamic Orthesis,” Eur. Patent
Office, France. 2005: 1-9.
21. Chen C-L, Chen F-F, Lin C-H, Lou S-Z, Chang H-Y, Yeung K-T.
Effect of anterior ankle-foot orthoses on weight shift in persons
with stroke. Arch Phys Med Rehabil. 2015;96(10):1795-801.
22. Tyson S, Sadeghi-Demneh E, Nester C. A systematic review
and meta-analysis of the effect of an ankle-foot orthosis on gait
biomechanics after stroke. Clin Rehabil. 2013;27(10):879-91.
23. Yang J, Bai D, Bai S, Li Y, Wang S, editors. Design of mechanical
structure and tracking control system for lower limbs rehabilitative
training robot. 2009 International Conference on Mechatronics
and Automation; 2009;17(4):368-72.
24. Radtka SA, Oliveira GB, Lindstrom KE, Borders MD. The
kinematic and kinetic effects of solid, hinged, and no ankle–foot
orthoses on stair locomotion in healthy adults. Gait Posture.
2006;24(2):211-8.
25. Taiar R, Adel C, Belassian G, Lamare D, Dumont J, Chené A,
et al. Can a new ergonomical ankle–foot orthosis (AFO) device
improve patients’ daily life? A preliminary study. Theor Issues
Ergon Sci. 2019;20(6):763-72.
26. Hirai H, Ozawa R, Goto S, Fujigaya H, Yamasaki S, Hatanaka
Y, et al., editors. Development of an ankle-foot orthosis with
a pneumatic passive element. ROMAN 2006-The 15th IEEE
International Symposium on Robot and Human Interactive
Communication; 2006; 17(4):368-72.
27. Lewallen J, Miedaner J, Amyx S, Sherman J. Effect of three
styles of custom ankle foot orthoses on the gait of stroke patients
while walking on level and inclined surfaces. J Prosthet Orthot.
2010;22(2):78-83.
28. Gök H, Küçükdeveci A, Altinkaynak H, Yavuzer G, Ergin S.
Effects of ankle-foot orthoses on hemiparetic gait. Prosthet Orthot
Int. 2003;17(2):137-9.