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A B S T R A C T

Background: Over the past two decades, myoelectric signals have been 
extensively used in rehabilitation technology and hybrid human-machine 
interfaces. A key challenge in creating self-engineered, cost-effective devices lies 
in acquiring reliable and accurate myoelectric signals. Additionally, identifying 
optimal anatomical sites for signal detection remains complex and is addressed 
in this study.
Methods: This applied research aims to tackle the outlined challenges through 
technological development and experimental testing. A Multi-Threading-based 
Queuing (MTQ) approach is proposed for real-time display and recording of 
muscle activity within a low-cost, multi-channel surface electromyography 
(sEMG) system. The technique was tested using raw (R) and feature (F) datasets 
via specialized classifiers to categorize sEMG signals from the silent utterance of 
English vowels captured from three facial muscles of a single healthy volunteer.
Results: The proposed low-cost sEMG data acquisition technique, utilizing 
MTQ, achieved a mean classification accuracy of 0.91 for both R and F datasets, 
surpassing previous techniques for English vowel classification. Model 4, paired 
with low-cost hardware, attained a remarkable mean accuracy of 0.94, showing 
improvements between 14.6% and 74.07% over prior studies.
Conclusion: The MTQ technique significantly enhances performance compared 
to existing configurations, suggesting that cost-effective sEMG data acquisition 
systems could replace commercial hardware in rehabilitation and human-
machine interface applications.
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Introduction

Over the past two decades, myoelectric signals have 
revolutionized applications in rehabilitation technology 
and hybrid human-machine interfaces. These signals, 
generated by muscle contractions during specific 
movements, provide valuable information that can 
enhance functional independence and improve the quality 
of life for individuals with impairments, especially those 

who have undergone laryngectomies [1, 2].
Numerous researchers have explored surface 

electromyography (sEMG) for its potential in detecting 
silent speech of English vowels using commercial or low-
cost solutions. Some studies have utilized commercially 
available systems to acquire data and categorize human 
speech into five English vowels, collecting sEMG data 
from three facial muscles using the AMLAB workstation 
[3], four facial muscles with MEGAWIN equipment [4-
6] and the BIOPAC MP36 system [7], and from eight 
muscles with a gUSBamp amplifier (gTec) in conjunction 
with the BCI2000 system [8]. Despite the availability of 
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these high-cost commercial solutions, which also require 
specialized training, some researchers have developed 
their systems to acquire sEMG data for English vowels 
from three facial muscles [9-11] or the neck region [12]. 
However, ensuring consistent acquisition of valid signals 
with real-time visualization and accurately identifying 
optimal electrode placement points on muscles presents 
significant challenges in developing these systems. These 
challenges can lead to collecting incorrect or garbled 
data during recording sessions, further degrading overall 
system performance.

Building upon our previous research [11], this study 
extends a novel technology using a Multi-Threading-
based Queuing (MTQ) technique designed to address key 
challenges in sEMG data acquisition by enabling real-
time visualization and recording of muscle activity. This 
approach not only aids in identifying optimal electrode 
placement on muscles but also allows users to monitor 
their performance during various tasks. A primary 
focus of this study is the utilization of cost-effective, 
multi-channel sEMG signal-acquisition systems, which 
record electromyograms from the skin›s surface. The 
proposed system provides a non-invasive alternative 
with applications in rehabilitation, sports science, and 
ergonomics, assisting in diagnosing muscle disorders and 
monitoring muscle activity.

To validate the proposed MTQ method, we created 
two separate sEMG datasets: raw (R) and feature (F). 
Comparing the results from datasets R and F provided 
deeper insight into our approach›s efficacy and precision. 
This comparative analysis was essential for establishing 
the MTQ methodology›s reliability and robustness.

Methods

This study is an applied research project, specifically 
a technological development study with experimental 
elements, aimed at improving existing data acquisition 
setups. The focus is developing and testing a novel 
multithreading queuing-based sEMG data acquisition 
system with real-time visualization. The methodology 
involves data collection from a single volunteer, feature 
extraction, and custom classifiers for pattern recognition.

The data for this study was meticulously recorded from 
a healthy 40-year-old male participant with no known 
speech impairments and proficient in English. This 
participant›s data collection aimed to limit variables such 
as age, gender, accent, and speech fluency. The participant 
provided informed consent and was fully briefed on 
the study’s procedure and purpose in accordance with 

the ethical code approved by the department’s review 
committee. Recordings were conducted in a stable 
setting, with room temperature between 24 and 26 
degrees Celsius, to minimize sweat effects, thereby 
ensuring data integrity [11, 13, 14].

For sEMG data acquisition, we utilized a cost-effective, 
three-channel MyoWare Muscle (MWM) sensor [15] 
integrated with the hardware developed in prior research 
[11]. Disposable Ag/AgCl electrodes with a 2 cm² gel 
surface were used for recording sEMG signals from 
three specific facial and neck muscles: the Orbicularis 
Oris (M1), the Masseter (M2), and the Digastric (M3) 
[11, 13, 14, 16]. These muscles were chosen for their 
potential to produce accurate sEMG data for silent speech 
recognition and their significance in understanding 
speech biomechanics.

The Orbicularis Oris, a circular lip muscle, is critical 
for shaping the lips during speech articulation. Due 
to its consistent activation patterns, it is an excellent 
candidate for silent speech recognition systems. The 
Masseter muscle, located along the mandibular ramus, 
contributes to robust jaw movements and displays 
distinct activation patterns associated with various speech 
sounds. Monitoring its sEMG signals can elucidate the 
coordination between mandibular movements and speech 
production. Lastly, the Digastric muscle in the neck, 
essential for mouth opening, plays a role in digestion and 
vocalization. Its involvement in silent speech recognition 
is based on its capacity to provide supplementary 
information about jaw dynamics during speech.

This study aims to improve the accuracy and efficiency 
of silent speech recognition systems by analyzing these 
muscles with sEMG technology, potentially aiding 
individuals with communication disorders. The MTQ 
method was tested using samples of softly articulated 
English vowels (A, E, I, O, and U) and a «Silence» 
condition. For reference, each vowel was assigned a 
unique number from 1 to 5, with «Silence» labeled as 0.

The sEMG signals acquired from the electrodes were 
transmitted to a computer via a serial interface for 
further processing. A graphical user interface (GUI) was 
developed using Python to facilitate signal processing 
and analysis. Figure 1 illustrates this interface, which 
includes real-time signal visualization to support efficient 
data monitoring and assessment.

Four control buttons—Start, Stop, Reset, and Record—
were integrated into the GUI to ensure smooth data 
collection. The developed GUI, combined with the proposed 
multi-threading-based queuing (MTQ) technique for 
sEMG data acquisition, enables real-time visualization.  

Figure 1: Screenshot of developed Graphical User Interface (GUI) with real-time visualization
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This setup facilitates efficient data processing and 
minimizes the risk of data errors, ensuring the system can 
manage substantial data volumes without compromising 
performance. Moreover, real-time visualization offers 
immediate feedback to users on the data acquisition 
status. Figure 2 provides an overview of the entire setup.

To clarify the proposed methodology, the following 
provides a comprehensive exposition of the MTQ 
technique from an algorithmic perspective. This detailed 
breakdown outlines the sequential steps integral to the 
MTQ technique, offering a deeper understanding of its 
operational flow.

Algorithm for MTQ
Start
    Initialize Tkinter GUI with control buttons, record_count label, 
and canvas.
    Initialize master_list as an empty list of lists: [[], [], []].
    Create two queues: queue1 and queue2.
    Create thread T1 to read a line from the port and append it to 
queue1.
    Create thread T2 to extract a line from queue 1 and append it to 
queue 2.
    Create thread T3 for extracting a line from queue2, appending it to 
master_list, and plotting it on the canvas.
    Set the connection status (conn) to False.
    Set the button click status (cond) to False.
    while True
        Check if the hardware is connected at the specified port
            If connected, set the connection status (conn) to True.
            Otherwise, display the message “Hardware not connected” 
and exit the loop.
        Check if conn is True, cond is False, and the Start button is 
clicked
            If true, set the button click status (cond) to True and start 
threads T1, T2, and T3.     
        Check if conn is True, cond is True, and the Stop button is clicked
            If true, set the button click status (cond) to False and stop 
threads T1, T2, and T3.
        Check if conn is True, cond is True, and the length of master_
list[0] is equal to frame_size
            If true, prepare the data as [datetime, gender, age].
            Convert the row-wise content from master_list into the column-
wise format and add it to the data.
            Append the target value to the data.
            Append the data as a row.
            Display the value of sample_count in the record_count label.
            Increment the sample_count by 1.
        Check if conn is True, cond is True, and the Reset button is 
clicked
            If true, set the button click status (cond) to False and clear the 
content of master_list.      
        Check if conn is True, cond is True, and the Exit button is clicked
            If true, set the cond to False, then the conn to False, destroy the 
Tkinter GUI window, and exit the loop.
    Display the message “Thanks”
MTQ: Multi-Threading-based Queuing technique
GUI: Graphical User Interface

The procedure begins by configuring the Tkinter graphical 
user interface (GUI), which includes creating control 
elements, a label for record count display, and a graphical area 
for data visualization. A triple-list data structure is initialized 
to store visual data, with two sequential data structures 
(queues) set up for interim data handling. Three processes 
(T1, T2, and T3) facilitate data flow: T1 handles data input, 
T2 manages data transfer between queues, and T3 updates 
the visual data structure, generating a real-time graph.  
The size of the data structure is managed to stay within 
a predefined limit. The system’s connection status is 
continuously monitored, with active data processing 

occurring only after successful hardware linkage and 
user interactions through the interface controls. The data 
processing phase compiles a dataset containing temporal, 
demographic, and measurement information, converts it 
into a columnar format, and updates the dataset count 
incrementally. System reset or termination commands 
prompt the necessary clean-up processes, concluding the 
algorithm’s execution with a confirmation message.

The algorithm strategically utilizes temporal 
domain metrics, statistical descriptors, and integral 
transformations to optimize the feature vector, effectively 
reducing processing demands. Based on a sample size of 
N=900, Table 1 quantitatively represents these attributes 
for an sEMG signal.

We used three muscles (M1, M2, and M3) to collect 
at least 55 trials for each vocabulary item for dataset 
preparation. A minimum of 300 samples were required 
for each sEMG channel, totaling 900 samples per trial. 
This setup enabled us to effectively test and scale the 
application’s sample capacity. We selected 50 rows from 
each dataset, using 900 columns from the raw dataset (R) 
and 10 columns from the feature dataset (F) to analyze 
the information contained within the sEMG recordings.

In this study, the recorded sEMG data samples were 
promptly allocated to a custom classification system, 
employing an 80-20 split for training and testing. 
Customized algorithms—K-Nearest Neighbors (KNN), 
Support Vector Machine (SVM), and Artificial Neural 
Networks (ANN)—were utilized for pattern recognition 
within the R and F datasets. The KNN algorithm operates 
without an underlying probabilistic model, classifying 
new observations based on the majority label among the 
nearest k neighbors. The SVM algorithm, on the other 
hand, aims to establish class boundaries by constructing 
an optimal separating hyperplane within feature space. 
Inspired by the human brain’s structure, ANN operates 
through layers of interconnected nodes, learning input-
output mappings by adjusting inter-node weights. ANNs 
have been extensively studied in sEMG classification 
for their capacity to encapsulate linear and non-linear 
relationships. Details on the customizations of deployed 
classifiers are presented in Table 2 [11].

Classifier efficacy was evaluated using accuracy, 
sensitivity, and specificity metrics, providing insights 
into performance across various contexts. Accuracy 
measures the proportion of true predictions (both 
true positives and true negatives) relative to the total 
predictions. Sensitivity represents the proportion of 
actual positive cases correctly identified, and specificity 
reflects the proportion of actual negative cases accurately 
recognized. These metrics were calculated using the 
following mathematical formulations:
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Figure 2: Here’s how our technique operates: Muscular activity of the facial muscles from a healthy male subject was recorded using a MyoWare 
Muscle (MWM) sensor, with the developed interface displaying the signal in real time. Once a valid signal is captured, it undergoes pre-processing, and 
its attributes are evaluated before storage. Deployed classifiers then independently utilized both R and F datasets to identify silent speech.

Table 1: Feature representation [11]
S. No Feature Mathematical Formula
F1 Maximum of sEMG (MAX)

F2 Minimum of sEMG (MIN)

F3 Mean Absolute Value (MAV) of sEMG

F4 Median of sEMG (MED)

F5 Standard Deviation of sEMG 
(STD)

F6 Variance of sEMG (VAR)

F7 Skewness of sEMG (SKW)

F8 Kurtosis of EMG (KUR)

F9 Root Mean Square (RMS) of sEMG

F10 Energy (ENG) of sEMG

Table 2: Customization details for each classifier
Classifier Parameters Details
Model1 (KNN) n_neighbors=6, algorithm=’auto’, weights=’uniform’
Model2 (SVM) kernel=’rbf’, C=100.0
Model3 (ANN (100)) hidden_layer_sizes=(100), learning_rate=0.001, activation=’relu’, max_iter=500
Model4 (ANN (100,100)) hidden_layer_sizes=(100,100), learning_rate=0.001, activation=’relu’, max_iter=500
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Where: TP (True Positive) - the number of positive 
instances successfully detected by the classifier. TN 
(True Negative) - the number of negative instances 
correctly identified by the classifier. FP (False Positive)- 
the number of negative examples incorrectly categorized 
as positive by the classifier. FN (False Negative)- the 
number of positive examples mistakenly labeled as 
negative by the classifier.

Results

The results of classifying 50 syllables using customizable 
classifiers are presented below. Figures 3 (a), (b), and 
(c) illustrate the real-time raw sEMG patterns for each 
vocabulary term as detected by individual muscles during 
the data acquisition process. Through visual inspection, it 
appears that each pattern is uniquely identifiable. 

The R and F datasets, derived from the primary dataset, 
were input into the classifiers, and Table 3 displays their 
classification accuracy. For the R dataset using Model1, 
the classification accuracies for each vocabulary item 
(Silence, A, E, I, O, and U) are 0.95, 0.85, 0.95, 0.95, 
0.88, and 0.88, respectively, resulting in a mean accuracy 
of 0.91 for Model1. Similarly, the mean accuracies for 
the R dataset with Model2, Model3, and Model4 are 
0.95, 0.87, and 0.90, respectively. The overall mean 

accuracy for the R dataset is 0.91, obtained by averaging 
each model’s mean accuracy.

For the F dataset with Model1, the accuracies for each 
vocabulary item are 0.92, 0.80, 0.83, 0.90, 0.80, and 
0.78, respectively, yielding a mean accuracy of 0.84 for 
Model1. Similarly, the mean accuracies for the F dataset 
using Model2, Model3, and Model4 are 0.92, 0.93, 
and 0.94, respectively. The overall mean accuracy for 
the F dataset is 0.91, calculated by averaging the mean 
accuracies of each model.

Figure 4 provides a visual representation of Table 3,  
illustrating the performance comparison of the 
classification techniques for each lexical content. The 
results indicate that Models 2, 3, and 4 outperform 
Model 1 in classification tasks across the R and F 
datasets. For the R dataset (Type=R), Figure 4 shows 
a decline in sensitivity for Models 1 and 2, with values 
approaching 0.30 or 0.40 for each lexical content. 
In contrast, the F dataset (Type=F) demonstrates 
significant improvement in sensitivity. The F dataset 
also shows a lower incidence of false negatives, where 
positive instances are incorrectly labeled as negative. 
Similarly, high specificity in both the R and F datasets 
is associated with fewer false positives, where negative 
instances are mistakenly identified as positive, as shown 
in Figure 4.

Figure 3: Recorded Surface Electromyography (sEMG) data for each muscle

Table 3: Evaluation metrics obtained for R and F datasets for each classifier & vocab
Vocabulary Customized

Classifiers
Dataset
Type

Evaluation Metrics Dataset
Type

Evaluation Metrics
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Silence Model1
Model2
Model3
Model4

R 0.95
0.98
0.97
0.98

0.90
1.00
1.00
1.00

0.96
0.98
0.96
0.98

F 0.92
0.97
0.92
0.93

1.00
1.00
0.90
0.90

0.90
0.96
0.92
0.94

A Model1
Model2
Model3
Model4

R 0.85
0.90
0.77
0.87

0.40
0.70
0.30
0.40

0.94
0.94
0.86
0.96

F 0.80
0.88
0.92
0.93

0.50
0.70
0.70
0.80

0.86
0.92
0.96
0.96

E Model1
Model2
Model3
Model4

R 0.95
0.97
0.90
0.93

0.90
0.90
0.90
0.90

0.96
0.98
0.90
0.94

F 0.83
0.92
0.98
0.98

0.60
0.90
0.90
0.90

0.88
0.92
1.00
1.00

I Model1
Model2
Model3
Model4

R 0.95
0.98
0.97
0.98

0.80
0.90
0.90
0.90

0.98
1.00
1.00
1.00

F 0.90
0.97
0.92
0.93

0.50
0.80
0.60
0.70

0.98
1.00
0.98
0.98

O Model1
Model2
Model3
Model4

R 0.88
0.92
0.83
0.80

0.70
0.80
0.20
0.70

0.92
0.94
0.96
0.82

F 0.80
0.92
0.92
0.93

0.30
0.70
0.90
0.80

0.90
0.96
0.92
0.96

U Model1
Model2
Model3
Model4

R 0.88
0.98
0.80
0.87

0.70
0.90
0.50
0.40

0.92
0.94
0.86
0.96

F 0.78
0.85
0.95
0.95

0.20
0.40
0.80
0.90

0.90
0.94
0.98
0.96
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Discussion

In this study, the authors utilized low-cost hardware 
alongside the proposed Surface Electromyography 
(sEMG) data acquisition technique to collect and classify 
English vowels within a raw dataset (R) and a feature 
dataset (F). Both datasets showed that Model2 and 
Model4 outperformed Model1 regarding sensitivity and 
specificity (refer to Table 3). These results indicate that 
Model2 and Model4 are better suited for classification 
tasks that require accurate identification of both positive 
and negative instances,

To demonstrate the proposed technique’s effectiveness, 
we comprehensively evaluated our results by comparing 
them to existing techniques at three levels. First, we 
evaluated accuracy at the dataset level, specifically 
comparing results from the R and F datasets. With the 
proposed technique, we achieved mean accuracies of 
0.91 for both the R and F datasets for English vowels. 
For English vowel datasets, authors [8] reported mean 
accuracies of 0.53 and 0.75 for R and F datasets [8], 
respectively, while authors [11] achieved 0.82 and 
0.83 for the same datasets.[11]. Our MTQ technique, 
however, led to notable improvements: a 71.6% increase 
over [8] and a 10.9% increase over [11] for the R dataset, 
and a 21.3% improvement over [8] and 9.63% over [11] 

for the F dataset. These substantial gains underscore the 
MTQ technique’s potential to significantly enhance data 
acquisition accuracy for both datasets.

Secondly, we compared our results with previous 
studies that classified English vowels using commercial 
hardware configurations for the F (feature) datasets 
[3–8]. Our Model 4 classifier outperformed existing 
techniques, achieving a mean accuracy of 0.94. Compared 
to previous methodologies, our approach showed 
significant improvements across various detection 
rates: 6.81% over [3], 2.17% over [4], 9.30% over [5], 
56.6% over [6], 11.1% over [7], and 25.3% over [8]. 
These findings highlight the superiority of our proposed 
MTQ technique for silent speech recognition and other 
muscle rehabilitation applications. Our method surpasses 
expensive commercial hardware configurations, 
confirming its practical effectiveness and cost-efficiency.

Thirdly, we compared the accuracy of our F dataset with 
similar studies that utilized low-cost hardware and self-
developed algorithms for English vowel recognition. For 
the F dataset, our models achieved mean accuracies of 
0.84, 0.92, and 0.94 with Model1, Model2, and Model4, 
respectively. Table 4 presents a detailed comparison of 
accuracy in sEMG English vowel recognition using various 
low-cost devices. Our F dataset outperforms those in other 
studies, underscoring the effectiveness and reliability of 

Figure 4: Illustration of evaluation metrics obtained by classifiers for each lexical content

Table 4: Accuracy evaluation with low-cost setups
Ref Classifiers employed

Model1 Model2 Model4
[11] 0.84 (Same) 0.83 (↑ 10.84 %) 0.82 (↑ 14.60 %)
[12] 0.66 (↑ 27.27 %) 0.80 (↑ 15.00 %) 0.54 (↑ 74.07 %)
Our 0.84 0.92 0.94
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our models with low-cost hardware configurations. These 
findings further validate our approach’s practical utility 
and adaptability in real-world applications.

The authors in [11] reported mean accuracies of 0.84 for 
Model1, 0.83 for Model2, and 0.82 for Model3, whereas 
the authors in [12] reported mean accuracies of 0.66 for 
Model1, 0.80 for Model2, and 0.54 for Model3 for the F 
dataset of English vowels. Our approach demonstrated 
significant improvements over these previously reported 
results with low-cost setups. Specifically, we achieved 
an accuracy of 0.84 for Model1, matching [11] and 
showing a 27.27% improvement over [12], a 10.84% 
improvement over [11], and a 15% improvement over 
[12] for Model2, and a 14.6% improvement over [11] 
and a 74.07% improvement over [12] for Model4. These 
results strongly suggest that integrating low-cost sEMG 
data collection devices with our MTQ technique offers 
a feasible alternative to expensive commercial hardware 
configurations, achieving high accuracy and enhancing 
overall system performance.

 Additionally, the incorporation of real-time visualization 
into our technique aids in identifying optimal muscle 
collection points, preventing inaccurate data recording 
during sessions. This method’s affordability and 
precise electrode placement support its application in 
rehabilitating various muscles. Furthermore, providing 
real-time visualization enables immediate adjustments 
during rehabilitation, ensuring muscles are accurately 
targeted and exercised. This improves rehabilitation 
effectiveness and minimizes the risk of additional injury 
or strain on the muscles.

Conclusion

This study presents advancements in Surface 
Electromyography (sEMG) data acquisition through 
the implementation of real-time visualization and 
customized machine learning classifiers on raw (R) and 
feature (F) datasets. The proposed MTQ sEMG data 
acquisition method significantly improved over previous 
techniques, achieving a 0.91 mean accuracy across both 
datasets for English vowel classification—a substantial 
enhancement from past research. Specifically, Model 4, 
paired with low-cost hardware, reached an impressive 
mean accuracy of 0.94, showing improvements ranging 
from 14.6% to 74.07% over earlier studies. These 
results underscore the superior performance of the MTQ 
approach in both silent speech recognition and muscle 
rehabilitation applications. The integration of real-time 
visualization also ensures accurate electrode placement 

and data fidelity.
Future research may further explore developing 

customized models for English and Hindi speakers 
and integrating deep learning techniques to enhance 
efficiency and adaptability in diverse applications.

Conflict of Interest: None declared.
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