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A B S T R A C T

Background: Sit-to-stand motion is a frequent and challenging task in daily life 
activities especially for elderly and disabled people. Central nervous system uses 
several strategies for sit-to-stand movement. Many studies have been conducted 
to understand the underlying basis of the optimal approach. Reinforcement 
learning (RL) is a suitable method for modeling the control strategies that occur 
in neuro-musculoskeletal system. 
Methods: In this paper a dynamic model of human sit-to-stand was derived, and 
kinematic data of a healthy subject has been extracted in this task. An optimal 
control problem was formulated considering minimum energy and Q-Learning 
method has been utilized to find the optimal joint moments during sit to stand 
movement. 
Results: The simulation results have been compared to the experimental data. 
The lower extremity joint angles have been simulated and tracked the actual 
human angles extracted from the experiments. Also the joints moments showed 
a satisfactory precision by the proposed approach.
Conclusion: An RL-based algorithm was used to model the human sit-to-stand, 
in which the model explores the state space with a Markov based approach and 
finds the best actions (joint moments) at each state (posture). In this approach the 
model successfully performs the task while consuming minimum energy. This 
was achieved by updating the algorithm in every trial using a Q-learning method. 
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Introduction

The population aging is an important issue even in 
developing countries. It has been reported that 10.5% of 
the Iranian people were over 60 years old in 2015. This 
population is going to increase to 21.7 % in 2050 [1]. This 
highly vulnerable group of society needs support for their 
daily life activities. Sit-to-stand movement is a frequent 
(four times per hour [2]) and important daily task. The 
performance of this movement declines with age which 
dramatically affects the independence of elderly people. 

Consequently, various investigations have been 
conducted to explore the underlying mechanism of sit-
to-stand movement [3, 4]. The previous studies can be 
classified into three main categories. The first category 
emphasizes on the musculoskeletal modeling of the 
sit-to-stand movement among healthy, elderly [5, 6] or 
disabled subjects [7]. In a systematic review, the main 
environmental factors that affect the performance of sit-to-
stand are determined using the experimental background 
in this field [8]. In this category, the approach is mainly 
based on the experimental and statistical analysis of the 
acquired data. kinematics of sit-to-stand motion has been 
extracted using mode based inertial sensing based on a 
three segment model [9]. The results usually indicate 
the main factors that influence the performance of the 
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movement such as sensation, speed, balance, and height 
of chair [10].

In the second group, the underlying muscle control 
strategy is investigated. The experimental data is 
utilized to extract the muscle synergies during the task 
[11]. Moreover the activation patterns of the muscles 
in sit-to-stand [12] are studied using the recorded 
electromyography (EMG) of the muscle modules involved 
in the motion [13]. 

In the third approach, a mathematical dynamic model is 
derived and the joint forces and moments are determined 
[14]. A control problem is usually defined and the control 
signals (usually the joint moments) are calculated such 
that the model output mimics the experimental data [15]. 
The muscular activation patterns are considered as the 
solution of an optimization problem [16]. 

In this paper, as a continuation of the previous works 
in the third category, the optimization problem is 
solved using reinforcement learning (RL) approach. RL 
techniques have been widely used in robotic applications 
especially when the problem is neither supervised nor 
unsupervised learning [17]. There has also been several 
studies on solving control problems with RL methodology 
[18, 19]. This strategy has been applied to find joint 
trajectories in a humanoid robot to go from crouch to stand 
position with minimizing power consumption [20]. Also 
in sequential human motions RL has been implemented 
to predict the movement [21]. Since the sit-to-stand task, 
more specifically, the muscle activation pattern, is learned 
by human, RL approach can be used to find the desired 
control pattern. The reward function can be defined such 
that the control system shows optimal performance.

In this paper a three-linkage dynamic model of human 
is proposed and the joint moments are determined using 
RL technique. The results are then compared with 
experimental data.

The organization of the paper is as follows: the dynamic 
model for STS motion is presented in section 2, the RL 
controller is proposed in section 3, the experimental 
results and discussions are presented in section 4, and 
section 5 contains the conclusion of the paper.

Methods

Dynamic Model
In order to model the human body during STS motion 

with fixed support, a linkage model with three segments 
representing shank, thigh and HAT (head and trunk) 
interconnected with revolute joints is used. The dynamic 
effects of the arms are neglected in this model. The 
segment lengths are denoted by li,i=1,2,3 in Figure 1, and 
the generalized coordinates are shown by φi,i=1,2,3 which 
are respectively the ankle, knee, and hip joint angles. 
The position of the ith link center of mass is identified by 
the distance di,i=1,2,3 measured from the distal joint as 
shown Figure 1.

The human dynamic model is obtained using Lagrange’s 
equations:

                                               (1)

wherein L is the Lagrangian, t is the time variable, qi 
is the generalized coordinate, and Qi is the generalized 
force/moment. Denoting by mi the mass, Ji the moment 
of inertia, and vi the velocity vector of the center of mass 
of the ith link, the kinetic energy, KE, and the potential 
energy, PE, of the model are, respectively, written as:

(2)
(3)

where ց denotes the gravitational acceleration. The 
generalized force/moment is obtained through calculating 
the virtual work δW due to the set of virtual (rotational) 
displacements , δφi, i=1,2,3 as in the following:

             (4)

where Ti, i=1,2,3, is the applied torque at the ith joint. 
It is seen in Appendix A how Eqs. (1)- (4) lead to the 
following dynamic equations governing the sit-to-stand 
motion:

(5)

(6)

(7)

where

Figure 1: schematic diagram of the dynamic model.
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                                        (8)

                                       (9)

The model parameters for different segments of the 
body such length, mass, center of mass, and moment of 
inertia are determined using the anthropometric data 
suggested by [22].

Reinforcement Controller
Reinforcement learning (RL) techniques are one of the 

most popular algorithms used to solve model-based or 
model-free control problems [18]. RL is a trial-and-error 
based method that does not require a database or detail 
prior knowledge of the model and desired trajectory unlike 
supervised learning methods [23]. There are several 
strategies to perform this trial-and-error exploration and 
exploitation among which Q-Learning is an optimal one 
[24].  

The standard reinforcement learning model consists 
of an agent connected to its environment through action 
and perception. On each step of exploration the agent 
receives, from the environment, some indication of the 
current state as input; the agent then chooses an action 
to generate the output. The algorithm should generate 
actions that increase a reward function [17]. The agent is 
trained over time by systematic trial and error, using a 
wide variety of algorithms, namely Q-Learning method.

Q-Learning a model-free, online-based approach to 
implement roughly repeating politics. In Q-learning, 
a Q-table provides a kind of agent’s knowledge after a 
Markov Decision Process (MDP) [25]. The action that 
the agent chooses depends on his action selection policy. 
By making any action immediately, the agent receives 
an reward from the environment, which should result in 
a Q-value update as Eq. 10 where Q(s,a) is the Q-value 
of current state-action pair, maxa′ Q(s′,a′) is the action 
having maximum Q-value in state s′, α is the learning rate, 
γ is the discount factor and r is the reward value received 
after taking action a in states. 

   (10)

A pseudo-code of Q-learning algorithm is shown in 
Table 1.

The generated Q-table from the above mentioned 
algorithm provides the optimal (best rewarded) action for 
any state of motion. The states of sit-to-stand motion are 
vectors in  space representing  discretized through 
the range of motion. The actions are vectors of the same 
size which indicate the increase, decrease or no change 
in the values of associated angles. The reward function 
(J) is based on the cost function of an optimal control 
problem as described by Eq. 11.

                               (4)

In which the first term indicates the difference between 
the model posture and the human posture at standing 
position  at final time (tf), and the second term 
represents the consumed energy during the whole 
movement. The coefficients ri are chosen such that there 
is a balance between the final posture difference and the 
consumed energy. 

Table 1: Q-Learning Algorithm
1. Initiate arbitrarily all Q(s,a) values; 
2. Repeat (for each episode): 
   (a) Choose a random (initial) states; 
   (b) Repeat (for each step in the episode):
i. Select an action a ϵ  A(s) according to the policy;

ii. Execute the action a, receive immediate reward r, then 

observe the   

           new state s′; 

iii. Q(s,a)←Q(s,a)+α[r+γmaxa′ Q(s′,a′)−Q(s,a)] 

iv. s ← s′

Until s is one of the goal states;

Until the desired number of episodes have been investigated.

Experiment
Experiments have been performed in order to extract the 

kinematics of the human sit-to-stand task and verify the 
proposed model with actual data. During each experiment, 
the angle of the ankle, knee and hip are derived using 
marker-based visual analysis (Figure 2). The STS motion 
is performed with the assistance of the fixed support 
which is the walker with activated brakes as shown in 
Figure 2. Four circular markers of different colors which 
were attached to the subjects’ shoulder, ankle, knee and 
hip joints, were used to follow the kinematics of motion 
on the basis of the proposed three-linkage model. They 
were then asked to sit down on a chair and stand up with 
closed arms on the chest. The subjects were asked to 
repeat the motion for four successive times with proper 
rest time in between so that the data was not affected by 
the subjects’ tiredness during the process.

In each experiment, the entire motion is recorded 
using an RGB camera. The visual data is recorded in 
30 frames per second, and is then used to obtain the 
x,y positions of the joints in order to distinguish the 
circular markers.
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Results

The proposed Q-Learning based controller is 
implemented on the three-linkage dynamic model and the 
results are compared with the experimental data acquired 
from human sit-to-stand motion. The proposed model 
successfully stands up from seated position and at the 
final states reach the desired human posture as shown 
in Figure 3.

Moreover, the generated joint torques are calculated 
and an average value of the applied joint moments are 
compared in Figure 4. The joint moments through the 
movement also indicate satisfactory performance of 
the model. This implies that the optimal Q-learning 
controller can be utilized to model such sit-to-stand 
movement.

Discussion

Using the Q-learning method, a dynamic model of 
sit-to-stand motion is controlled such that the task is 
successfully fulfilled with a similar pattern to human 
motion acquired from experimental data. This covers 

the kinematic aspect of resemblance in motion. The 
differences in joint angles in experiment and simulation 
are because of two reasons. Firstly, discretizing the state 
space is essential in QL-algorithm while the model is 
continuous. Secondly the muscles are not considered in 
the dynamic model which mainly affect the variations of 

. In the presented dynamic model, the trunk can remain 
vertical without applying any torque, while in the human 
body this requires activation of the trunk muscles.

From a kinetic point of view, the calculated average 
torque in the human motion equals to 35.5 N.m whereas 
the average torque of the Q-learning simulation is 35.8 
N.m. This shows satisfactory compatibility between the 
proposed model and the experimental data according to 
dynamic behavior. 

In a similar work by Edibol et. al. the Q-learning 
method was applied to control a humanoid robot in 
sit-to-stand motion [9]. Their goal was to reduce the 
power consumption during the task. For a 4.3kg NAO 
robot, they reported a reduction of average torque from 
0.53 N.m to 0.49 N.m using Q-learning algorithm. In 
comparison to our study, their work is focusing on power 
reduction while we try to mimic the experimental results 

Figure 2: One of the case studies: (a) Schematic diagram of human body with specified joints and (b) Body movement during experiment.

Figure 3: Variations of angles of the proposed model (phiQL) and the 
ones recorded in experiments (phiExp)

Figure 4: The average joint torques during the experiments with respect 
to time as calculated from the model (QL) and experiments (Human)
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considering the optimal behavior of human motion. These 
are both achieved by adjusting the reward function in 
the reinforcement algorithm. Therefore the Q-learning 
approach can be utilized for various goals by defining 
different reward functions for the same task. 

As a limitation of this study, the learning approach is 
based on a discrete state space while the actual task in 
happening in a continuous manner. This can be improved 
by implementing new continuous based learning 
approaches such as deep reinforcement learning [26]. 

In this study a linkage model was implemented for 
describing the motion, musculoskeletal models can be 
used to declare the sit-to-stand mechanism more precisely 
for future works. The contribution of each muscle in joint 
moments can be determined using the learning methods 
and compared to the EMG of the muscles obtained from 
the experiments.

Conclusion

A three linkage dynamic model of sit-to-stand movement 
was proposed. The joint moments applied at ankle, knee 
and hip were considered as the control inputs that can 
fulfill the movement. These values were determined 
such that the model successfully performs the task while 
consuming minimum energy. This was achieved through 
an RL-based algorithm in which the model explores the 
state space with a Markov based approach and finds 
the best actions (joint moments) at each state (posture). 
The algorithm is updated in every trial by a Q-learning 
method. The results were compared with experimental 
data captured by RGB camera. The simulation results 
show satisfactory performance of the proposed controller. 
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Appendix A: Intermediate steps in deriving Equations (6)-(8)
Using Equations (2) and (3), the Lagrangian is written as

 
       
                                                                                                    (A.1)

The following differentiation results are then obtained based on Equation (A.1)

                                                                                                   (A.2) 

In addition, the generalized forces are obtained,using Equation (4), as follows

                                                                                                                                                                         (A.3)

where

                                                                                                                                     (A.4)

for i=1,2,3. The dynamic Equations (6)-(8) are then achieved by setting qi=φi, i=1,2,3, and substituiting Equations (A.2) and (A.3) into Equation (1).


